2019年贵州高考数学(理科)答案
2019年普通高等学校招生全国统一考试
理科数学·参考答案
一、选择题理科数学·参考答案
1.A 2.D 3.C 4.A 5.C 6.D 7.B 8.B 9.C 10.A 11.C 12.D
二、填空题
13. 14.4 15. 16.118.8
三、解答题
17.解:(1)由已知得0.70=a+0.20+0.15,故a=0.35.
b=1–0.05–0.15–0.70=0.10.
(2)甲离子残留百分比的平均值的估计值为
2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.
乙离子残留百分比的平均值的估计值为
3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.
18.解:(1)由题设及正弦定理得.
因为sinA0,所以.
由,可得,故.
因为,故,因此B=60°.
(2)由题设及(1)知△ABC的面积.
由正弦定理得.
由于△ABC为锐角三角形,故0°<A<90°,0°<C<90°,由(1)知A+C=120°,所以30°<C<90°,故,从而.
因此,△ABC面积的取值范围是.
19.解:(1)由已知得ADBE,CGBE,所以ADCG,故AD,CG确定一个平面,从而A,C,G,D四点共面.
由已知得ABBE,ABBC,故AB平面BCGE.
又因为AB平面ABC,所以平面ABC平面BCGE.
(2)作EHBC,垂足为H.因为EH平面BCGE,平面BCGE平面ABC,所以EH平面ABC.
由已知,菱形BCGE的边长为2,∠EBC=60°,可求得BH=1,EH=.
以H为坐标原点,的方向为x轴的正方向,建立如图所示的空间直角坐标系H–xyz,
则A(–1,1,0),C(1,0,0),G(2,0,),=(1,0,),=(2,–1,0).
设平面ACGD的法向量为n=(x,y,z),则
即
所以可取n=(3,6,–).
又平面BCGE的法向量可取为m=(0,1,0),所以.
因此二面角B–CG–A的大小为30°.
20. 解:(1).
令,得x=0或.
若a>0,则当时,;当时,.故在单调递增,在单调递减;
若a=0,在单调递增;
若a<0,则当时,;当时,.故在单调递增,在单调递减.
(2)满足题设条件的a,b存在.
(i)当a≤0时,由(1)知,在[0,1]单调递增,所以在区间[0,l]的最小值为,最大值为.此时a,b满足题设条件当且仅当,,即a=0,.
(ii)当a≥3时,由(1)知,在[0,1]单调递减,所以在区间[0,1]的最大值为,最小值为.此时a,b满足题设条件当且仅当,b=1,即a=4,b=1.
(iii)当0<a<3时,由(1)知,在[0,1]的最小值为,最大值为b或.
若,b=1,则,与0<a<3矛盾.
若,,则或或a=0,与0<a<3矛盾.
综上,当且仅当a=0,或a=4,b=1时,在[0,1]的最小值为-1,最大值为1.
责任编辑:xqq