福州大学
华侨大学
集美大学
福州工商学院
2025福建高考交流群
高考网官方公众号
分享

2019年北京高考数学(理科)考试真题

来源:学科网时间:06-11
2019年普通高等学校招生全国统一考试
数  学(理)(北京卷)
本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题   共40分)
一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知复数z=2+i,则
(A) (B) (C)3 (D)5
(2)执行如图所示的程序框图,输出的s值为
 
(A)1  (B)2 (C)3  (D)4
(3)已知直线l的参数方程为t为参数),则点(1,0)到直线l的距离是
(A)  (B)  (C)  (D) 
(4)已知椭圆ab>0)的离心率为,则
(A)a2=2b2 (B)3a2=4b2 (C)a=2b (D)3a=4b
(5)若xy满足,且y≥−1,则3x+y的最大值为
(A)−7 (B)1 (C)5 (D)7
(6)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2m1=lg,其中星等为mk的星的亮度为Ekk=1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为
(A)1010.1 (B)10.1 (C)lg10.1    (D)1010.1
(7)设点ABC不共线,则“的夹角为锐角”是“”的
(A)充分而不必要条件 (B)必要而不充分条件
(C)充分必要条件 (D)既不充分也不必要条件
(8)数学中有许多形状优美、寓意美好的曲线,曲线C就是其中之一(如图).给出下列三个结论:
 
①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);
②曲线C上任意一点到原点的距离都不超过
③曲线C所围成的“心形”区域的面积小于3.
其中,所有正确结论的序号是
(A)① (B)② (C)①② (D)①②③

第二部分(非选择题    共110分)
二、填空题共6小题,每小题5分,共30分。
(9)函数fx)=sin22x的最小正周期是__________.
(10)设等差数列{an}的前n项和为Sn,若a2=−3,S5=−10,则a5=__________,Sn的最小值为__________.
(11)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.
 
(12)已知lm是平面外的两条不同直线.给出下列三个论断:
lm; ②m; ③l
以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.
(13)设函数fx)=ex+aexa为常数).若fx)为奇函数,则a=________;若fx)是R上的增函数,则a的取值范围是___________.
(14)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.
①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.
三、解答题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程。
(15)(本小题13分)
在△ABC中,a=3,bc=2,cosB=
(Ⅰ)求bc的值;
(Ⅱ)求sin(BC)的值.
(16)(本小题14分)
如图,在四棱锥PABCD中,PA⊥平面ABCDADCDADBCPA=AD=CD=2,BC=3.EPD的中点,点FPC上,且
(Ⅰ)求证:CD⊥平面PAD
(Ⅱ)求二面角F–AE–P的余弦值;
(Ⅲ)设点GPB上,且.判断直线AG是否在平面AEF内,说明理由.
 
(17)(本小题13分)
改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
支付金额(元)
支付方式
(0,1000] (1000,2000] 大于2000
仅使用A 18人 9人 3人
仅使用B 10人 14人 1人
 
(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;
(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.

(18)(本小题14分)
已知抛物线Cx2=−2py经过点(2,−1).
(Ⅰ)求抛物线C的方程及其准线方程;
(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点MN,直线y=−1分别交直线OMON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.
(19)(本小题13分)
已知函数
(Ⅰ)求曲线的斜率为1的切线方程;
(Ⅱ)当时,求证:
(Ⅲ)设,记在区间上的最大值为Ma).当Ma)最小时,求a的值.
(20)(本小题13分)
已知数列{an},从中选取第i1项、第i2项、…、第im项(i1<i2<…<im),若,则称新数列为{an}的长度为m的递增子列.规定:数列{an}的任意一项都是{an}的长度为1的递增子列.
(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;
(Ⅱ)已知数列{an}的长度为p的递增子列的末项的最小值为,长度为q的递增子列的末项的最小值为.若p<q,求证:<
(Ⅲ)设无穷数列{an}的各项均为正整数,且任意两项均不相等.若{an}的长度为s的递增子列末项的最小值为2s–1,且长度为s末项为2s–1的递增子列恰有2s-1个(s=1,2,…),求数列{an}的通项公式.

 
标签:
责任编辑:lxf

相关推荐

查看更多>>

高考聚焦

aaa
×

添加老师微信咨询,添加时请备注姓名、年龄。

复制微信号:18960750936
×

添加老师免费咨询,添加时请备注姓名、年龄。

复制微信号:fjgkw123